Splitting planar graphs of bounded girth to subgraphs with short paths

 Aleksey Glebov

 Aleksey Glebov}

Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
«Graphs and Groups, Spectra and Symmetries»

Novosibirsk State University, August 15-28, 2016

Colourings without long monochromatic paths

Colourings without long monochromatic paths

Let $G=(V, E)$ be a graph; $a, b \in \boldsymbol{Z} ; a, b \geq 1$.

Colourings without long monochromatic paths

Let $G=(V, E)$ be a graph;
$a, b \in \mathbf{Z} ; a, b \geq 1$.
An (a, b)-colouring of G is its vertex colouring $\varphi: V \rightarrow\{1,2\}$ such that every monochromatic path of colour 1 has length at most $a-1$ and every path of colour 2 has length at most $b-1$.

Colourings without long monochromatic paths

Let $G=(V, E)$ be a graph;
$a, b \in Z ; a, b \geq 1$.
An (a, b)-colouring of G is its vertex colouring $\varphi: V \rightarrow\{1,2\}$ such that every monochromatic path of colour 1 has length at most $a-1$ and every path of colour 2 has length at most $b-1$.

An (a, b)-colouring is acyclic if it has no monochromatic cycles, i.e. every monochromatic component is a tree of diameter at most $a-1$ or $b-1$ respectively.

Colourings without long monochromatic paths

Let $G=(V, E)$ be a graph;
$a, b \in \boldsymbol{Z} ; a, b \geq 1$.
(1,1)-colouring \equiv proper 2-colouring

Colourings without long monochromatic paths

Let $G=(V, E)$ be a graph;
$a, b \in \boldsymbol{Z} ; a, b \geq 1$.
(1,1)-colouring \equiv proper 2-colouring
$(2,2)$-colouring \equiv monochromatic components are K_{1} and K_{2}

Possible components for acyclic $(7,7)$-colouring

Possible components for acyclic $(7,7)$-colouring

Arbitrary tree of diam ≤ 6

Possible components for acyclic $(7,7)$-colouring

Arbitrary tree of diam $\leq 6 \quad$ Single

Possible components for acyclic (7,7)-colouring

Arbitrary tree of diam ≤ 6

Single
\bullet

Path

Results about (a,b)-colourings of planar graphs

Results about (a,b)-colourings of planar graphs

J. Mihok (1985): For any constants a and b
\exists planar graphs that are not (a, b)-colourable.

Results about (a, b)-colourings of planar graphs

J. Mihok (1985): For any constants a and b \exists planar graphs that are not (a, b)-colourable. M. Axenovich, T. Ueckerdt, P. Weiner (2015): The same is true for triangle-free planar graphs (with girth 4).

Results about (a, b)-colourings of planar graphs

J. Mihok (1985): For any constants a and b \exists planar graphs that are not (a, b)-colourable.
M. Axenovich, T. Ueckerdt, P. Weiner (2015): The same is true for triangle-free planar graphs (with girth 4).
Question: What is the minimum integer $g_{0}>4$ such that every planar graph of girth at least g_{0} is (a, b)-colourable for some constants a, b ?

Results about (a,b)-colourings of planar graphs

Results about (a,b)-colourings of planar graphs

O.V. Borodin, A.V. Kostochka, M. Yancey (2013): Every planar graph of girth ≥ 7 is (2,2)-colourable.

Results about (a, b)-colourings of planar graphs

O.V. Borodin, A.V. Kostochka, M. Yancey (2013): Every planar graph of girth ≥ 7 is (2,2)-colourable.
A.N. Glebov, D.Zh. Zambalaeva (2014): Every planar graph of girth ≥ 6 is acyclically (5,5)-colourable. $\Rightarrow 5 \leq g_{0} \leq 6$.

Results about (a, b)-colourings of planar graphs

O.V. Borodin, A.V. Kostochka, M. Yancey (2013): Every planar graph of girth ≥ 7 is (2,2)-colourable.
A.N. Glebov, D.Zh. Zambalaeva (2014):

Every planar graph of girth ≥ 6 is acyclically (5,5)-colourable. $\Rightarrow 5 \leq g_{0} \leq 6$.
M. Axenovich, T. Ueckerdt, P. Weiner (2015): Every planar graph of girth ≥ 6 has an acyclic (15,15)-colouring such that every monochromatic component is a path (colouring by linear forests).

Main result

Main result

Theorem 1: Every planar graph of girth ≥ 5 is acyclically $(7,7)$-colourable. $\Rightarrow g_{0}=5$

Main result

Theorem 1: Every planar graph of girth ≥ 5 is acyclically $(7,7)$-colourable. $\Rightarrow g_{0}=5$

Theorem 1a (list version): Every planar graph of girth ≥ 5 is list acyclically $(7,7)$ colourable.
(Every vertex v gets its colour from a list $L(v)$ of size $|L(v)|=2$.)

Motivation of the proof

Motivation for the proof

Thomassen's List 5-colour Theorem: Every planar graph is 5-choosable.

Motivation for the proof

Thomassen's List 5-colour Theorem:

Every planar graph is 5-choosable.

Technical Theorem: Every planar graph is L-colourable for any list assignment L satisfying:

Main technical result: definitions

Main technical result: definitions

$G=(V, E)$ is a connected plane graph of girth ≥ 5; F is the outer face of G.

Main technical result: definitions

$G=(V, E)$ is a connected plane graph of girth ≥ 5; F is the outer face of G.
Def: $M=\left(P, Q, R, S_{1}, S_{2}\right)$ is a marking of F, if

Main technical result: definitions

$G=(V, E)$ is a connected plane graph of girth ≥ 5; F is the outer face of G.
Def: $M=\left(P, Q, R, S_{1}, S_{2}\right)$ is a marking of F, if

1) $V(F)=Q \cup R \cup S_{1} \cup S_{2}$ is a partition of $V(F)$;

Main technical result: definitions

$G=(V, E)$ is a connected plane graph of girth ≥ 5; F is the outer face of G.
Def: $M=\left(P, Q, R, S_{1}, S_{2}\right)$ is a marking of F, if

1) $V(F)=Q \cup R \cup S_{1} \cup S_{2}$ is a partition of $V(F)$;
2) $R \cup S_{1} \cup S_{2}$ is an independent set in G;

Main technical result: definitions

$G=(V, E)$ is a connected plane graph of girth ≥ 5; F is the outer face of G.
Def: $M=\left(P, Q, R, S_{1}, S_{2}\right)$ is a marking of F, if 1) $V(F)=Q \cup R \cup S_{1} \cup S_{2}$ is a partition of $V(F)$;
2) $R \cup S_{1} \cup S_{2}$ is an independent set in G;
3) P is a path of length at most 2 on the boundary of F and if length $(P)=2$ then at least one end-vertex of P belongs to $R \cup S_{1} \cup S_{2}$;

Main technical result: definitions

$G=(V, E)$ is a connected plane graph of girth ≥ 5; F is the outer face of G.
Def: $M=\left(P, Q, R, S_{1}, S_{2}\right)$ is a marking of F, if 1) $V(F)=Q \cup R \cup S_{1} \cup S_{2}$ is a partition of $V(F)$;
2) $R \cup S_{1} \cup S_{2}$ is an independent set in G;
3) P is a path of length at most 2 on the boundary of F and if length $(P)=2$ then at least one end-vertex of P belongs to $R \cup S_{1} \cup S_{2}$; 4) G has no path:

$$
S_{1} \cup S_{2} \quad \underbrace{\notin P}_{-} \quad S_{1} \cup S_{2}
$$

Main technical result: definitions

Marking $M=\left(P, Q, R, S_{1}, S_{2}\right)$ of F (example):

Main technical result: definitions

Main technical result: definitions

An acyclic $(7,7)$ colouring $\varphi: V \rightarrow\{1,2\}$ fits the marking $M=\left(P, Q, R, S_{1}, S_{2}\right)$ of F if:

Main technical result: definitions

An acyclic $(7,7)$ colouring $\varphi: V \rightarrow\{1,2\}$ fits the marking $M=\left(P, Q, R, S_{1}, S_{2}\right)$ of F if:

1) Every monochromatic component of φ (a tree) contains at most one vertex from $R \cup S_{1} \cup S_{2}$.

Main technical result: definitions

An acyclic (7,7) colouring $\varphi: V \rightarrow\{1,2\}$ fits the marking $M=\left(P, Q, R, S_{1}, S_{2}\right)$ of F if:
2) $\forall v \in R$ if T is a mon. component containing v, then the rooted tree T_{v} has height $h\left(T_{v}\right) \leq 2$:

Main technical result: definitions

An acyclic $(7,7)$ colouring $\varphi: V \rightarrow\{1,2\}$ fits the marking $M=\left(P, Q, R, S_{1}, S_{2}\right)$ of F if:
2) $\forall v \in R$ if T is a mon. component containing v, then the rooted tree T_{v} has height $h\left(T_{v}\right) \leq 2$:

Main technical result: definitions

An acyclic (7,7) colouring $\varphi: V \rightarrow\{1,2\}$ fits the marking $M=\left(P, Q, R, S_{1}, S_{2}\right)$ of F if:
2) For $v \in S_{1}$ the rooted tree T_{v} satisfies:

Main technical result: definitions

An acyclic (7,7) colouring $\varphi: V \rightarrow\{1,2\}$ fits the marking $M=\left(P, Q, R, S_{1}, S_{2}\right)$ of F if:
2) For $v \in S_{1}$ the rooted tree T_{v} satisfies:
v (single)

Main technical result: definitions

An acyclic (7,7) colouring $\varphi: V \rightarrow\{1,2\}$ fits the marking $M=\left(P, Q, R, S_{1}, S_{2}\right)$ of F if:
2) For $v \in S_{1}$ the rooted tree T_{v} satisfies:
v (single)

$$
v\left(h\left(T_{v}\right) \leq 2\right)
$$

Main technical result: definitions

An acyclic $(7,7)$ colouring $\varphi: V \rightarrow\{1,2\}$ fits the marking $M=\left(P, Q, R, S_{1}, S_{2}\right)$ of F if: 3) For $v \in S_{2}$ vice versa:

Main technical result: definitions

An acyclic (7,7) colouring $\varphi: V \rightarrow\{1,2\}$ fits the marking $M=\left(P, Q, R, S_{1}, S_{2}\right)$ of F if: 3) For $v \in S_{2}$ vice versa:
$v\left(h\left(T_{v}\right) \leq 2\right)$

v (single)

Splitting planar graphs
Novosibirsk, Aug 15-28

Main technical result: definitions

An acyclic $(7,7)$ colouring $\varphi: V \rightarrow\{1,2\}$ fits the marking $M=\left(P, Q, R, S_{1}, S_{2}\right)$ of F if: 4) For $v \in Q$:

Main technical result: definitions

An acyclic $(7,7)$ colouring $\varphi: V \rightarrow\{1,2\}$ fits the marking $M=\left(P, Q, R, S_{1}, S_{2}\right)$ of F if:
4) For $v \in Q$:
a) for $v \notin P$ there are no additional requirements;

Main technical result: definitions

An acyclic (7,7) colouring $\varphi: V \rightarrow\{1,2\}$ fits the marking $M=\left(P, Q, R, S_{1}, S_{2}\right)$ of F if:
4) For $v \in Q$:
a) for $v \notin P$ there are no additional requirements;
b) if $v \in P$, then $T_{v} \subseteq P$, i.e.

Main technical result

Main technical result

Theorem 2: Suppose $G=(V, E)$ is a connected plane graph of girth $g(G) \geq 5$; F is an outer face of $G ; M=\left(P, Q, R, S_{1}, S_{2}\right)$ is a marking of F. Then any (pre)colouring $\varphi_{P}: V(P) \rightarrow\{1,2\}$ of P which fits M can be extended to an acyclic $(7,7)$-colouring of G fitting M.

Main technical result

Theorem 2: Suppose $G=(V, E)$ is a connected plane graph of girth $g(G) \geq 5$; F is an outer face of $G ; M=\left(P, Q, R, S_{1}, S_{2}\right)$ is a marking of F. Then any (pre)colouring $\varphi_{P}: V(P) \rightarrow\{1,2\}$ of P which fits M can be extended to an acyclic $(7,7)$-colouring of G fitting M.

Theorem $2 \Rightarrow$ Theorem 1

Main technical result

Main technical result

Main technical result

Thank you for your kind attention!

Precoloured path P

A path P of length at most 2 on the boundary of F whose vertices are precoloured by colours 1 and 2 (green and red): $\varphi_{P}: V(P) \rightarrow\{1,2\}$.

2 Peripatetic Salesman Problem

with distances 1 and 2 .

Input:
Complete undirected graph: $\quad G=(V, E)$
Weight function: $w: E \rightarrow\{1,2\}$
Solution:
Two edge-disjoint Hamiltonian cycles:

$$
\begin{gathered}
H_{1}, H_{2}: H_{1} \cap H_{2}=\varnothing \\
w\left(H_{1} \cup H_{2}\right) \rightarrow \min
\end{gathered}
$$

6/5-approximation algorithm $A_{6 / 5}$

for 2-PSP(1,2)
(E. Gimadi, Y. Glazkov, A. Glebov, 2007)

Stage 1. By Gabow's Algorithm find a 4-regular subgraph

$$
G_{4} \leq G: \quad w\left(G_{4}\right) \rightarrow \min
$$

Stage 2. By Algorithm $P_{4 / 5}$ find two edge-disjoint partial tours
T_{1} and T_{2} in $G_{4}: \quad\left|E\left(T_{1} \cup T_{2}\right)\right| \geq 4 / 5\left|E\left(G_{4}\right)\right|=8 n / 5$
Stage 3. Extend T_{1} to a Hamiltonian cycle H_{1}.
By Procedure $P_{T \rightarrow H}$ extend T_{2} to a Hamiltonian cycle H_{2} :

$$
H_{1} \cap H_{2}=\varnothing
$$

(Partial) Tour - a collection of vertex-disjoint paths of a graph containing all its vertices

Acyclic path

- - Terminal vertex

Algorithm $P_{4 / 5}$ for finding two partial tours in a 4-regular graph G_{4}

Stage 1. Constructing T_{1}

Step 1.1. Find initial T_{1} (by any algorithm):
K - number of paths;
C - number of cyclic paths:
If $C=0 \rightarrow$ Stage 2;
$Q=2 K+C-$ quality of T_{1}

Step 1.2. Joining terminal vertices
If $C=0 \rightarrow$ Stage 2;
If terminal vertices are nonadjacent \rightarrow Step 1.3;
Otherwise:

Step 1.3. Subtracting cyclic paths
If $C=0 \rightarrow$ Stage 2; Otherwise

1) find cyclic path $P_{C} ; 2$) construct a Path Tree F:

Reduction 1.3.1:

Reduction 1.3.2:

Procedure $P_{A C}$. If $L($ or $R)$ is not isomorphic to C_{m}, K_{1}, K_{4} or $K_{3,3}$, then we find an acyclic Hamiltonian path in it.

Reduction 1.3.3:

Reduction 1.3.4:

Reduction 1.3.5:

After making a Reduction \rightarrow Step 1.2

Lemma. If G_{4} is not isomorphic to K_{5} or $K_{4,4}$, then after Stage 1 we get a partial tour T_{1} with $K \leq n / 5$ and $C=0$, in which terminal vertices are nonadjacent.

Stage 2. Constructing T_{2}

Step 2.0. $H:=G-T_{1}$ - a subgraph in G_{4} with $2 K$ vertices of degree 3 and $n-2 K$ vertices of degree 2 , in which 3 -vertices are nonadjacent.

Step 2.1. Find initial T_{2} in H (any algorithm)

Step 2.2. Join terminal vertices of T_{2} (analog of Step 1.2)

Step 2.3. Subtracting single-vertex paths (simplified Step 1.3):

After every reduction \rightarrow Step 2.2

Lemma. After Stage 2 the partial tour T_{2} has $K=K\left(T_{1}\right)$ acyclic paths and at most $(n-5 K) / 3$ cyclic paths.

Theorem 1. $\quad P_{4 / 5}$ is a quadratic time algorithm which finds edge-disjoint partial tours T_{1} and T_{2} in $G_{4}:\left|E\left(T_{1} \cup T_{2}\right)\right| \geq 8 n / 5$.
$T_{1} \rightarrow H_{1} ;$
$T_{2} \rightarrow H_{2}$ by Procedure $P_{T \rightarrow H}$:

$$
H_{1} \cap H_{2}=\varnothing
$$

Theorem 2. $A_{6 / 5}$ is a cubic time
6/5-approximation algorithm for $2 \mathrm{PSP}(1,2)$:

$$
w\left(H_{1} \cup H_{2}\right) \leq 6 / 5 w(O P T)
$$

«Graphs and Groups, Spectra and Symmetries»

Novosibirsk State University, August 15-28, 2016

